Process Agility and Software Usability:
Toward Lightweight Usage-Centered
Design

by Larry L. Constantine

HELLO!
‘9@4 | AM ALESSANDRO SCARLATO

QR CODE

What is Agile
Development?

3

Agile Development Methodology”
is an umbrella term for a number
of different iterative and
incremental software
development methodologies.
Compared to traditional waterfall
models, they are all lightweight
and adaptable.

Successful agile teams can produce
higher-quality software better
meeting user needs quicker and at
a lower cost.

BASICS OF AGILE

Satisfy customer through early and continuous
delivery of features

Embrace change, even late-changing requirements
Gives your customer a competitive advantage
Co-location of roles, daily close collaboration
Simplicity - maximize amount of work NOT done

What is Agile
Development?

Your PLAN

Remember agility is not just being
fast!

Agility isn’t about speed. Agile is
about navigating ambiguity, adapting
to change & applying new learnings.

The ability to create and respond to
change in order to succeed in an
environment.

What is Agile
Development?

P\t d
& DELIVER
B INCREMENTALLY

INSTEAD OF ALL
AT ONCE

Agile methods complete small portions of the deliverables in
each delivery cycle (iteration or sprints).

Iterative methods evolve the entire set of deliverables over
time, completing them near the end of the project.

Iterations, or sprints, are short time frames (timeboxes) that
typically last from one to four weeks. All cycles during an
iteration: planning, analysis, design, coding, unit testing, and
acceptance testing. At the end of the iteration a working
product is demonstrated to stakeholders.

THE RULES OF AGILITY ARE VERY SIMPLE:

O Work in short release cycles.
O Do only what is needed without embellishment.
O Don't waste time in analysis or design, just start cutting code,

8 Describe the problem simply in terms of small, distinct pieces, then implement
these pieces in successive iterations.

O Develop a reliable system by building and testing in increments with
immediate feedback.

O Start with something small and simple that works, then elaborate on
successive iterations.

O Maintain tight communication with clients and among programmers.
O Test every piece in itself and regression test continuously.

AGILE VS
WATERFALL

WATERFALL

Defne ! Release Deﬁne ! Releaso Deﬁne ! Release
*VALUE

The waterfall model: Do each lifecycle activity in
sequence for whole system and then move on
to next lifecycle activity. Waterfall model can’t
manage change (no feedback until it’s too late).

Agile process: Do all the lifecycle activities for
one feature of system and then move on to next
Feature. In the case of Agile, the customer has
space for changes

AGILE MAINFESTO

In 2001, 17 software developers
met at a resort in Snowbird, Utah to
discuss lightweight development
methods. Together they published
the Agile Manifesto.

The Manifesto for Agile Software
Development is based on this twelve
principles.

QQQaAQa

Qur highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the shorter
timescale.

Business people and developers must
work together daily throughout the
project.

Build projects around motivated
individuals. Give them the environment
and support they need, and trust them
to get the job done.

The most efficient and effective method
of conveying information to and within a
development team is face-to-face
conversation.

8,
9,

Working software is the primary
measure of progress.

Agile processes promote sustainable
development. The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

Continuous attention to technical
excellence and good design enhances

agility.

Simplicity--the art of maximizing the
amount of work not done—is essential.

The best architectures, requirements,
and designs emerge from self-organizing
teams.

At regular intervals, the team reflects on
how to become more effective, then
tunes and adjusts its behavior
accordingly.

10

AGILE METHODOLOGIES

Scrum

Kanban

DSDM

Crystal

SCRUM

5

Product Owner

Sprint Planning
Meeting

@

Scrum Master

Daily Scrum

SPRINT
1-4 WEEKS

Finished
Work

&

Spnnt
Review
+
Sprint
Retrospective

Scrum is an approach
where the development
process is split into short (1-
4 weeks) incremental
interactions (called sprints),
project progress is
constantly tracked, and
planned meetings with the
customers and developers
are regularly conducted.

LEAN SOFTWARE DEVELOPMENT

01 03
Eliminate | 02 Decide as late

waste + Amplify as possible
| Learning

04 * 07

Deliver as fast 05 06 See
as possible Empower | Build the whole

quality in

the team

12

Lean is an approach
focused on minimizing
waste in the software
development (excessive
functionality, downtime in
the development process,
unclear requirements),
promoting efficient use of
team resources, and
concurrent teamwork.

KANBAN

13

Kanban is an approach based on a visual
representation of the work in progress
and limiting tasks taken in an iteration to
meet the iteration goals and avoid the
development team overburdening.

Kanban is a visual way to manage tasks
and workflows, which utilizes a kanban
board with columns and cards. The cards
represent tasks, and the columns organize
those tasks by their progress or current
stage in development.

EXTREME PROGRAMMING

Coding
Standard

Whole Team
Collective :
Ownership Test-Driven-
Development
Customer Pair
Tests Programming

Refactoring

Planning
Game

14

Continuous

Simple Design

Integration

Small Releases

Sustainable
Pace

XP is focused on speed and continuous
delivery. It promotes high customer
involvement, rapid feedback loops,
continuous testing, continuous planning,
and close teamwork to deliver working
software at very frequent intervals,
typically every 1-3 weeks.

Taken to the extreme, code can be
reviewed continuously through the
practice of pair programming , with one
programmer writing the code and the
other one reviewing the line of code
written.

it has the twelve supporting practices
shown in the picture

CRYSTAL

The 7 properties of Crystal Clear

mandatory

Osmotic communication
Sit close
Communicate often
Include all

Reflective improvement
Improve methodology
Improve the team
Reflection workshop

Frequent delivery
Delievery, not iteration
Every two month
Min. 2 deliveries per project

non-mandatory

Easy access to expert users
Written specs are not enough
Feedback early and often
Real users, not your manager

Personal safety
If you're scared, you don't perform
When feeling safe, you can take critique

Focus
Minimize disruptions
Loud and quiet time
Multitasking get's less done

Agile technical enviornment
Automated tests
Configuration management
Frequent integration

Crystal is a family of sub-methodologies that
scales projects based on their size and criticality,
applying different sub-methodologies
respectively. Each has unique characteristics
driven by several factors, such as team size,
system criticality, and project priorities

DYNAMIC SYSTEMS DEVELOPMENT METHOD (DSDM)

The 8 DSDM
principles

Knowledge
TRAIN'e=o

Gopyright © 2018 Knawlsdgs Train Limited

e Cooperate and collaborate

‘our team should work colaboratively and feel able to make decisions on
benalf of thoss they represent. APPOINt SUEHECt Mattsr SXPSFS On your team
to ensurs ki i shared. Stakeholders ean share their knowiedge with
the project team through Faciltated Workshope.

= Involve stakeholders
at the right time

= Develop a “one feam™
culture

* Involve business

0 Develop iteratively

The conospt of iterative delivery ic at the heart of using a DSDM approach.
It's rare that anything s created perfeotly first time, with finer detaiis emerging
later rather than soaner. If you smibracs changs within your project, you'l
enable your team to produce work more acouratsly.

o Focus on the business need

Firstly, remember that any decision taken on your project should be in e with
your projsct goais. Your project should be a means fo an end, not an end in
itoeif. Useful techniques such as Timebaxing and MoSCOW Pricritisation will
'help you to foous on defivering what the busness needs and when it nesds it.

e Never compromise quality

In DSDM, the level of quality to be deiivered shouki be agreed at the start. Al
work shouid aim to achieve no more and no less of that level, and be ‘good
enough’ to use. Buid in quality by testing deliverables early and confinuously,
and reviewing constanty.

u“‘*d\'\“
0 Communicate continuously

affect your project SUCOSSS.
interaction through dely stand-ups and . To avoid crossed wires,
precent your work early and ofien ueing modea and profotypes. Alvays
encourage informal, face-to-face communioation within the team

9 Deliver on time

mmmwmnmfaﬂ\mmaﬂeaﬂm
non-negotiable. For more pradiotabis deivenss, plan &l tmsbaxes n
advancs and st a tme-frame, Femmuﬂnvﬂvdependlngmbtmnesn
prioritiss, but ensurs the dsivery Gate rsmaing the same.

e Build incrementally

DSDM advocates that before committing to significant ment, teams
must first understand the scope of the business problem to be soved and

the propesed selution. Howsver, nat in such detail that the project becomes
paralysed by overly detailed analysis of requirements.

* Deliver business benefit
earty where poasible

+ Reassess priorities.
with each increment

that the work Is corract

6 Demonstrate control

ummymnmmmym are in control of your project. One

* Evaluate continuing

DSDM is based on eight key
principles that direct the team and
create a mindset to deliver on time
and within budget. These agile
principles primarily revolve around
business needs/value, active user
involvement, empowered teams,
frequent delivery, integrated testing,
and stakeholder collaboration.

FEATURE DRIVEN DEVELOPMENT

Feature Driven Development
consists of five basic activities:

Dsvsiop Build a
an

Features
Qverall ;
Model List Feature Feature

|

{more shape A list of features A development plan A design package
than content) grouped into sele Class owners {seqUENCES)

An ohject modal and subjectargas Feature Set Owners (add rmore contant to
* notes - the ohject model)

Build
By
Feature

Comgleted cient:
valued function

FDD (Feature-Driven
Development) is an approach
where the overall software
model is created first, followed
by preparing a list of features
required, planning, designing,
and building by feature.

AGILE USAGE-CENTERED DESIGN

18

Usability and the user experience are
emerging as critical determinants of
success.

If customers cannot find what they are
looking for, they cannot buy it.

Poorly designed interfaces increase user
errors, which can be costly. Mistakes
made entering credit card billing
information, for example, can lead to lost
sales. Billions of dollars in lost Web sales
can be traced to usability problems.

In addition to usability, aesthetic aspects
of design may also figure in the user
experience.

AGILE USAGE-CENTERED DESIGN

User interface design and usability are acknowledged as weak points in both the “heavyweight” processes,
such as the so called Unified Process, and the lightweight competitors, such as Extreme Programming.

XP and the other light methods are light on the user side of software. They seem to be at their best in
applications that are not GUI-intensive.

XP do explicitly provide for user or client participation in pinning down requirements and setting scope
through jointly developed scenarios, known as user stories. But user stories are typically written by
customers or customer representatives, not necessarily by genuine direct end-users. Confusion between
"end users" and "customers"

19

CONCLUSIONS BENEFITS [

= Agile is a lightweight methodology: It has only a few rules and practices,
or only ones that are easy to follow. In contrast, a complex method with
many rules is considered a heavyweight methodology.

= The agile processes concentrate on code: Design is on-the-fly and as
needed. No need to prepare thorough documentation. This is because the
project scope may be changed.

= Early results: With short release cycles the developers get down to the
project as soon as they become aware of its basic features.

= More reliable code: Wich means more up-time, cheaper development,
and less support and maintenance.

20

CONCLUSIONS PITFALLS (U

Poor Resource Planning: Because teams won't know what their end result
will look like from day one, it's challenging to predict efforts like cost, time
and resources required at the beginning of a project.

Limited Documentation: Usually not at the beginning. As a result, it
becomes less detailed.

Fragmented Output: When a teams work on each component in different
cycles, the complete output often becomes very fragmented rather than
one cohesive unit.

No Finite End: There is never a clear vision of what the “final product”
looks like.

Difficult Measurement: The'see-as-you-go" nature makes measuring
progress difficult.

THANKS

22

Any questions?

